海森堡不確定性原理不限制單一測量的準確度。
原文
uncertainty principle physical principle, enunciated by Werner Heisenberg in 1927, that places an absolute, theoretical limit on the combined accuracy of certain pairs of simultaneous, related measurements. The accuracy of a measurement is given by the uncertainty in the result; if the measurement is exact, the uncertainty is zero. According to the uncertainty principle, the mathematical product of the combined uncertainties of simultaneous measurements of position and momentum in a given direction cannot be less than Planck's constant h divided by 4π. The principle also limits the accuracies of simultaneous measurements of energy and of the time required to make the energy measurement. The value of Planck's constant is extremely small, so that the effect of the limitations imposed by the uncertainty principle are not noticeable on the large scale of ordinary measurements; however, on the scale of atoms and elementary particles the effect of the uncertainty principle is very important. Because of the uncertainties existing at this level, a picture of the submicroscopic world emerges as one of statistical probabilities rather than measurable certainties. On the large scale it is still possible to speak of causality in a framework described in terms of space and time; on the atomic scale this is not possible. Such a description would require exact measurements of such quantities as position, speed, energy, and time, and these quantities cannot be measured exactly because of the uncertainty principle. It does not limit the accuracy of single measurements, of nonsimultaneous measurements, or of simultaneous measurements of pairs of quantities other than those specifically restricted by the principle. Even so, its restrictions are sufficient to prevent scientists from being able to make absolute predictions about future states of the system being studied. The uncertainty principle has been elevated by some thinkers to the status of a philosophical principle, called the principle of indeterminacy, which has been taken by some to limit causality in general. See quantum theory .
譯文
物理理論不確定性原理,由海森堡于1927年闡明。指明同時測量某些測量對時,綜合準確度的限制。測量的準確度由測量結果的不確定度給定。如果測量是精確的,則不確定度為零。 根據不確定性原理,同時測量位置和給定方向的動量時,合成不確定度之積,不能小于普朗克常數除以4π。此原理還限制同時測量能量與測量能量所需時間的測量準確度。普朗克常數特別小,在宏觀世界中,對通常測量,不確定性原理的限制效應不顯現;而對原子和粒子的尺度,不確定性原理的限制效應非常重要。由于此場合不確定性的存在,亞微觀世界的顯現為統計,而非必然可測。大尺度中,在時空所描述的框架中,談因果關系是可以的;在原子世界,這是不可能的。這種描述要求諸如位置,速度,能量以及時間的精確測量,而由于不確定性原理,這些量不能精確測量。不限制單一測量的準確度,也不限制非同時測量的準確度,非不確定原理要求的成對的量,同時測量也不限制準確度。即使如此,科學做出所研究的系統的關于未來狀態的絕對預言,它的限制是充足的。不確定性原理被一些思想家引申去研究哲學,稱為模糊原理,被用于限制通常的因果關系。見量子理論。
Bibliography: See W. Heisenberg, The Physical Principles of the Quantum Theory (tr. 1949); D. Lindley, Uncertainty (2007). |