計量論壇

 找回密碼
 立即注冊

QQ登錄

只需一步,快速開始

搜索
打印 上一主題 下一主題

[概念] 論文《兩種測量理論之間概念分歧的起源和演變》中英版

[復制鏈接]
26#
 樓主| yeses 發表于 2020-11-18 15:31:57 | 只看該作者
本帖最后由 yeses 于 2020-11-18 15:35 編輯
何必 發表于 2020-11-18 08:49
那直接就給出這個“真值”隨機部分大小的統計特征估計值(不確定度)就行了,為什么要扯上“誤差”的不 ...


1.不是“隨機部分“的統計值,您這還是在傳統概念里。現在的不確定度概念是隨機變量(未知量)所存在的概率范圍的評價值,不存在系統隨機說法。
2.真值只有一個,測得值不等于真值的根源是誤差,所以只有從誤差入手(在所有可能的條件下對各種源誤差進行統計,研究它們各自的概率區間及其合成規律),才能推定出真值的概率范圍。

請仔細閱讀下面這篇論文,推理過程是很詳細的。

測量誤差及其不確定性.pdf (985.48 KB, 下載次數: 8)
27#
thearchyhigh 發表于 2020-11-19 15:31:08 | 只看該作者
何必 發表于 2020-11-18 08:49
那直接就給出這個“真值”隨機部分大小的統計特征估計值(不確定度)就行了,為什么要扯上“誤差”的不 ...

正解!

不說了,感覺作者和我們不在一個頻道。
1、簡單的問題復雜化;
2、沒有實用性;
3、估計沒看過或看不懂(?)最新版的計量術語和不確定度評定(JJF1059)。

建議作者看看JJF1059.2應該會有收獲。
JJF1059.2-2012.pdf (750.53 KB, 下載次數: 2)



28#
 樓主| yeses 發表于 2020-11-19 22:01:08 | 只看該作者
thearchyhigh 發表于 2020-11-19 15:31
正解!

不說了,感覺作者和我們不在一個頻道。

啊啊,論文都是從批判這些規范開始的,請看論文的參考文獻。這是國際數學會議和期刊社經過反復審稿才發表的喲。

連隨機變量概念和方差概念都歪曲了概率論概念,這些規范根本就沒有資格作為評判新理論的根據了。
29#
 樓主| yeses 發表于 2020-11-19 22:06:10 | 只看該作者
thearchyhigh 發表于 2020-11-19 15:31
正解!

不說了,感覺作者和我們不在一個頻道。

的確不在一個頻道。

我反復說要把思維退回到概率論重新出發,可您只管現有規范,要知道現在這些規范都是通過歪曲概率論概念而編制的,您又不愿意仔細閱讀論文。

補充內容 (2020-11-20 10:21):
測量理論發源于概率論,測量理論出現了概念爭議得以概率論概念為基準進行評判,這是科技工作者必須具有的起碼邏輯能力。
30#
xinliang 發表于 2020-11-20 10:29:19 | 只看該作者
好好學習一下,謝謝樓主
31#
abc2449792650 發表于 2020-11-20 11:11:17 | 只看該作者
測得值不是每個觀測值的數學期望嗎 我們講測量結果不是都重復測量幾次用每個觀測值數學期望的估計值來表示的嗎 有方差很正差啊 為什么要區別于概率論 你樣本總量無窮大的前提達不到啊
32#
 樓主| yeses 發表于 2020-11-20 21:58:25 | 只看該作者
本帖最后由 yeses 于 2020-11-20 21:59 編輯
abc2449792650 發表于 2020-11-20 11:11
測得值不是每個觀測值的數學期望嗎 我們講測量結果不是都重復測量幾次用每個觀測值數學期望的估計值來表示 ...


“測得值不是每個觀測值的數學期望嗎?”

答:不是!!!每個觀測值都是一個數值,每個觀測值的數學期望都是其自身,且其方差是0。~這才是純正的概率論概念。

請重新翻閱概率論回顧數學概念,現有測量理論給人們灌輸了很多違背概率論的錯誤概念,一定要摒棄這些錯誤概念的干擾才能理解新理論。
33#
abc2449792650 發表于 2020-11-22 17:13:51 | 只看該作者
那么先不講測量理論,聊一聊概率。小時候數學老師給我們講概率,就是做個拋硬幣的實驗,搞了10次,有七次是正面,三次是反面。老師說正面在這10次出現的頻率是7/10,反面在這10次出現的頻率是3/10。老師還說了如果我們拋無數次我們會發現出現正面的頻率是1/2出現反面的概率也是1/2,這個時候我們把這個頻率叫做是概率。這個時候老師停頓了下問想知道下一次拋硬幣到底是正面還是反面,假設出現反面記為0出現正面記為1把0和1分別乘以他們的概率,就是數學期望0.5。這個數字是老師估計下次可能出現的結果。
再回來說測量,我們測量不就和這個實驗一樣我們想要得出下一次測量可能出現的結果,而結果你只用0或者1表示嗎 還是說用實驗做出來的0.7 來表示更加可靠呢。
再有更加離譜的8848.43m根本就不是一個數值,是一個量值。你文章開篇就是個錯誤的論點,一個量值不確定度為0,你拿什么神仙設備復現的。
34#
 樓主| yeses 發表于 2020-11-23 10:03:14 | 只看該作者
本帖最后由 yeses 于 2020-11-23 10:07 編輯
abc2449792650 發表于 2020-11-22 17:13
那么先不講測量理論,聊一聊概率。小時候數學老師給我們講概率,就是做個拋硬幣的實驗,搞了10次,有七次是 ...


1.比方打得很好!由0和1統計出來的數學期望是0.7,把0.7作為測量結果當然更可靠,這當然沒有問題!但是,請問:由0和1統計出來的方差是0.7的方差嗎???數學期望0.7是不是數值呢?方差是數學期望的方差嗎?數學期望有方差嗎?

2.您用什么數學根據來證明8844.43和0.7不是一個數值?如果您能用論文的形式把這個證明完成并發表,我就服您。

~很多人都是您這樣把量的真值和量的測量結果(測得值)沒有區分清楚,用傳統的錯誤概念為標準答案來評判新理論。

測量結果的不確定度是0,但誤差和真值的不確定度不是0!各是各的不確定度,這個不確定度也不是傳統概念的那種不確定度。
35#
thearchyhigh 發表于 2020-11-23 10:20:29 | 只看該作者
本帖最后由 thearchyhigh 于 2020-11-23 10:36 編輯
yeses 發表于 2020-11-19 22:06
的確不在一個頻道。

我反復說要把思維退回到概率論重新出發,可您只管現有規范,要知道現在這些規范都是 ...


1、就是如此,中國人的論文才會讓人看不起。
2、說到”歪曲“,您們才是在”歪曲”現有理論,偷換一下概念就變成新理論了。
3、現有理論:測量結果=測得值+不確定度,Y=x+u。
      您們把“測得值”x”歪曲”成您們的“測量結果x”,不確定度u歪曲成”誤差?(x)+誤差不確定度“u(?(x))”“。現有理論的”測量結果“您們打算”偷換成什么,文中沒提,我幫您們圓一下,就算“被測量”吧。不然連基本的測量數學模型都沒有,哪來的數學推論。可得:“被測量”Y=測量結果x+誤差?(x)+誤差不確定度“u(?(x))”,   誤差?(x)期望值是零,然后“被測量”Y=測量結果x+誤差不確定度“u(?(x))”,比較一下兩個數學模型,真的換湯不換藥,所以我一開始就回復說沒發現兩種理論有什么不同,一定要說不同,估計是和幾十年前的理論去比較。。
4、“不愿意仔細閱讀論文”,你怎么知道我沒看論文?偷換概念的測量模型+最最基本的“方差一協方差傳播律”數學知識,學過概論論的都知道,實在不知道論文還有什么“有用”的東西。。。  反而是您們沒仔細看現有測量理論吧,JJF是可應用于實踐的,這也是您們的所謂新理論要解決的下一步問題,簡化到實踐,實踐中 y基本是一維的,所以矩陣計算變成數組計算,然后可以像JJF1059.1一樣用公式“∑”計算,然后您們會發現兩種理論真的沒區別,。
5、提醒一下基本的概率論概念,有一種分布是偏態分布,期望值不為零,誤差?(x)期望值是零是有問題的,所以現有理論已經把不確定度和誤差的概念分開了,強行把不確定度和誤差搞在一起才會有邏輯問題。。。
#最后,我的回復您能回復就回復,不要說這個又扯那個。實在說不過,就來一句,我這是國際論文什么的。

36#
csln 發表于 2020-11-23 11:09:08 | 只看該作者
本帖最后由 csln 于 2020-11-23 11:14 編輯
thearchyhigh 發表于 2020-11-23 10:20
1、就是如此,中國人的論文才會讓人看不起。
2、說到”歪曲“,您們才是在”歪曲”現有理論,偷換一下概 ...


您其實不用對這一位說“您們”,就這個論壇而言,持與他相同觀點的人好象沒有,就他自己而已

至于別的地方還有沒有人與其觀點一致,天知道
37#
abc2449792650 發表于 2020-11-23 13:06:22 | 只看該作者
測量理論也沒說約定真值不確定度為零啊,要么干啥費勁替換真值為約定真值的概念。我們實際中通常是把測量不確定度較小的量值作為約定真值,那么按照您的說法您測出來的東西天下無敵不確定度為零,你要怎么做量值傳遞呢?約定真值都是假的呀按照你說的。
量值是量和值,和純粹的數值是有區別的。量根據復現的難度本身也是有不確定度的。你就好意思說8844.43m是常數,按照你說的一塊錢是1,一毛錢也是1。一塊等于一毛?量值和數值肯定是不一樣的。
按照你的說法我用測量設備去測一個未知量的量值你這個時候怎么去算誤差呢,模型是x=x0你告訴我誤差怎么算,誤差都沒法算不要談誤差的不確定度,按照你說的真值有不確定度,測量結果沒有不確定度,我們量值傳遞系統是不是出了問題。
我是一線做計量的工作人員說實話只有一些基礎知識,你們搞理論的如果沒有真的搞出來,不能用在實際應用上面那就只在知網上面搞好了不要干擾我們
38#
 樓主| yeses 發表于 2020-11-23 15:53:44 | 只看該作者
abc2449792650 發表于 2020-11-23 13:06
測量理論也沒說約定真值不確定度為零啊,要么干啥費勁替換真值為約定真值的概念。我們實際中通常是把測量不 ...

不多說了,見下面圖片。愿意思考問題就再去翻翻概率論,這種公共論壇本來就是用來交流學術思想的,不存在勉強誰的意思。



補充內容 (2020-11-24 08:59):
因為x=E(X)=0.7,所以必然有σ (x)=σ (E(X))=σ (0.7);而σ (0.7)=0,所以必須有σ (x)=0。~這僅僅是個代數推理,您大概也沒有看懂吧!
39#
abc2449792650 發表于 2020-11-23 20:25:52 | 只看該作者
我認為是您概率論沒有學好 誰告訴你用數學期望做結果 就要用數學期望的方差算不確定度的,數學期望和方差都是描述隨機變量的數學特征,你單獨用任何一個都沒辦法完整的描述一組隨機變量的。
40#
 樓主| yeses 發表于 2020-11-23 22:07:43 | 只看該作者
abc2449792650 發表于 2020-11-23 20:25
我認為是您概率論沒有學好 誰告訴你用數學期望做結果 就要用數學期望的方差算不確定度的,數學期望和方差都 ...

您不是說不確定度是測量結果x=0.7的不確定度嗎?傳統理論的表達式不是σ2 (x)=0.21嗎?等式σ2 (x)=σ2 (0.7)看不懂嗎?

我堅持測量結果x=0.7是常數,常數的不確定度是0。即σ2 (x)=0!
41#
 樓主| yeses 發表于 2020-11-23 22:14:34 | 只看該作者
abc2449792650 發表于 2020-11-23 20:25
我認為是您概率論沒有學好 誰告訴你用數學期望做結果 就要用數學期望的方差算不確定度的,數學期望和方差都 ...

別說概率論了,說說代數吧。
有x=E(X)=0.7,那么就必然有σ2 (x)=σ2 (E(X))=σ2 (0.7)。~這僅僅是等量代換。
42#
njlyx 發表于 2020-11-23 23:09:53 來自手機 | 只看該作者
也許應該區分一下"隨機變量"與"不確定量"?……"不確定量"的稱謂,似乎與"認識"有關;"隨機變量"可能重在表達"量"的客觀屬性。………對于那些"公認"具有唯一量值(實用近似)的"常量",人們由于不能確定此唯一量值究竟是多少,稱之為"不確定量"是合適的;但若將它說成是"隨機變量",從而討論其"數學期望"、"方差"、…,似乎有點扯?
43#
thearchyhigh 發表于 2020-11-24 08:39:36 | 只看該作者
csln 發表于 2020-11-23 11:09
您其實不用對這一位說“您們”,就這個論壇而言,持與他相同觀點的人好象沒有,就他自己而已

至于別的地 ...

論文有好幾個人掛名。。
44#
thearchyhigh 發表于 2020-11-24 09:00:16 | 只看該作者
本帖最后由 thearchyhigh 于 2020-11-24 09:03 編輯

45#
 樓主| yeses 發表于 2020-11-24 09:02:46 | 只看該作者
abc2449792650 發表于 2020-11-23 20:25
我認為是您概率論沒有學好 誰告訴你用數學期望做結果 就要用數學期望的方差算不確定度的,數學期望和方差都 ...

仔細看一下這個代數推理:
因為x=E(X)=0.7,
所以必然有σ (x)=σ (E(X))=σ (0.7);

而σ (0.7)=0,
所以又必須有σ (x)=0。
46#
thearchyhigh 發表于 2020-11-24 09:03:41 | 只看該作者
yeses 發表于 2020-11-23 15:53
不多說了,見下面圖片。愿意思考問題就再去翻翻概率論,這種公共論壇本來就是用來交流學術思想的,不存在 ...

47#
 樓主| yeses 發表于 2020-11-24 09:08:31 | 只看該作者
本帖最后由 yeses 于 2020-11-24 09:10 編輯


請您把這種表達的數學出處拿出來

數值的標準偏差是0,請翻閱任何一本概率論教科書都可以找到。
48#
abc2449792650 發表于 2020-11-24 09:12:49 | 只看該作者
不用討論了。他做論文,研究的對象都沒搞明白。我們一直講的是隨機變量x,用的是隨機變量的數學期望和方差。他研究隨機變量x用的數學期望和數學期望的方差,還在說我們歪曲了概率論。沒什么好討論的。
49#
thearchyhigh 發表于 2020-11-24 09:20:52 | 只看該作者
yeses 發表于 2020-11-24 09:08
請您把這種表達的數學出處拿出來

數值的標準偏差是0,請翻閱任何一本概率論教科書都可以找到。 ...


1、看清楚我回復的哪條,而且在您加補充說明前回復的。編輯錯誤發慢了一點。。我是說下圖中紅框中的等式明顯不成立,怎么得來的。。
50#
thearchyhigh 發表于 2020-11-24 09:25:01 | 只看該作者
yeses 發表于 2020-11-24 09:08
請您把這種表達的數學出處拿出來

數值的標準偏差是0,請翻閱任何一本概率論教科書都可以找到。 ...

測量結果不就是測得的量值+不確定的范圍?
或者按您個人的術語,被測量(測量結果)=測量結果(測得值)+誤差范圍(不確定的范圍)
您需要登錄后才可以回帖 登錄 | 立即注冊

本版積分規則

小黑屋|Archiver|計量論壇 ( 閩ICP備06005787號-1—304所 )
電話:0592-5613810 QQ:473647 微信:gfjlbbs閩公網安備 35020602000072號

GMT+8, 2025-7-22 05:19

Powered by Discuz! X3.4

Copyright © 2001-2023, Tencent Cloud.

快速回復 返回頂部 返回列表
主站蜘蛛池模板: 日韩精品国产一区| 窝窝社区在线观看www| 天堂精品高清1区2区3区| 亚洲五月综合缴情婷婷| 被夫上司持续入侵大桥未久| 天天干视频在线观看| 久久综合九色综合97免费下载| 精品日韩欧美一区二区在线播放| 国产精品福利久久香蕉中文| 久久99国产亚洲精品观看| 欧美黑人乱大交| 国产中文字幕在线免费观看| 99re在线观看视频| 日本无卡无吗在线| 亚洲欧美视频在线播放| 色婷五月综激情亚洲综合| 国产高清美女一级毛片图片| 久久久久亚洲AV成人片| 欧美日韩国产综合视频在线看| 四虎成人精品免费影院 | 男女性色大片免费网站| 国产无遮挡吃胸膜奶免费看 | 男生女生差差差很痛| 国产极品在线观看视频| jlzzjlzz亚洲乱熟无码| 日韩精品无码一区二区三区| 人人妻人人澡人人爽不卡视频| 麻豆一精品传媒媒短视频下载| 在线观看亚洲网站| 久久99精品久久只有精品| 欧美日韩在线视频| 变态Sm天堂无码专区| 久久久久久不卡| 天堂网2018| 国产精品大bbwbbwbbw| 巨大挺进她的花茎| 成年午夜性视频| 国产精品酒店视频| 国产免费av片在线无码免费看| 大黑人交xxxx| 女m羞辱调教视频网站|