0.01~961.78℃分溫區(qū)90國(guó)際溫標(biāo)的傳播不確定度方程
傅廣生[1] 康志茹[1,2][1]河北大學(xué),河北保定071002 [2]河北省計(jì)量科學(xué)研究所,河北石家莊050051
摘 要:通過(guò)直接對(duì)內(nèi)插方程求導(dǎo),獲得了0.01~961.78℃分溫區(qū)的傳播不確定度方程。其靈敏度系數(shù)的基本結(jié)構(gòu)與內(nèi)插方程相同,仍然是組成原內(nèi)插方程的基礎(chǔ)函數(shù)的線(xiàn)性組合,但組合系數(shù)不同,且仍是一分段函數(shù)。[著者文摘]
關(guān)鍵詞:計(jì)量學(xué) ITS-90溫標(biāo) 不確定度 傳播方程
分類(lèi)號(hào): TB942[免標(biāo)]文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1000-1158(2006)03-0241-05欄目信息:
相關(guān)文獻(xiàn):主題相關(guān)
Equations of Propagation of Uncertainty on ITS-90 in the Sub-range from 0.01 to 961 .78 ℃FU Guang-sheng, KANG Zhi-ru 1.Hebei University, Baoding, Hebei 071002, China; 2. Hebei Provincial Institute of Metrology, Shijiazhuang, Hebei 050051, ChinaAbstract:By direct differentiation with respect to the ITS-90 interpolation equation in the sub-range from 0.01 to 961.78℃, equations of propagation of uncertainty on ITS-90 in the above range are given. Its sensitivity coefficients are also linear combinations of basic functions comprising the interpolation only with different constant, and are still sectional functions.[著者文摘]
Key words:Metrology; ITS-90; Uncertainty; Equation of propagation |
|